ac6-training, un département d'Ac6 SAS
 
Site affiché en Français
Site affiché en FrançaisVoir le site en English (USA)Voir le site en English (GB)
go-up

leftthintrapezium-20-bb9203 ac6 > ac6-training > Programmation > FPGA > VHDL avancé pour les FPGA Renseignements Télécharger la page Call us Ecrivez nous

V2 VHDL avancé pour les FPGA

Acquérir une solide méthodologie de conception avec le meilleur du VHDL pour la simulation et la synthèse

Objectifs
  • Comprendre les différentes possibilités offertes par le langage VHDL
  • Être capable de lire et de tester des composants VHDL
  • Comprendre les notions de synthèse logique
  • Comprendre le problème crucial de l'implémentation des machines à états finis (FSMs) dans le matériel
  • Organiser le code en développent des packages et des librairies
  • Réutilisation des composants
  • Apprendre à écrire des testbenches efficaces pour la simulation
  • Connaître les différents styles de rédaction et leur impact sur la qualité des résultats de la synthèse
  • Vérifier les timings
  • Comment structurer et écrire des environnements de vérification structurés VHDL importants et complexes
  • introduction aux méthodologies de vérification VHDL OSVVM et UVVM
  • Cours théorique
    • Support de cours imprimé et au format PDF (en anglais).
    • Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et pédagogique.
  • Activités pratiques
    • Les activités pratiques représentent de 40% à 50% de la durée du cours.
    • Elles permettent de valider ou compléter les connaissances acquises pendant le cours théorique.
    • Exemples de code, exercices et solutions
    • Un PC (Linux ou Windows) par binôme de stagiaires (si plus de 6 stagiaires) pour les activités pratiques avec, si approprié, une carte cible embarquée.
    • Le formateur accède aux PC des stagiaires pour l'assistance technique et pédagogique.
  • Une machine virtuelle préconfigurée téléchargeable pour refaire les activités pratiques après le cours
  • Au début de chaque demi-journée une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours répond à leurs attentes et l'adapter si nécessaire
  • Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus
  • Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise, ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.
  • Les progrès des stagiaires sont évalués de deux façons différentes, suivant le cours:
    • Pour les cours se prêtant à des exercices pratiques, les résultats des exercices sont vérifiés par le formateur, qui aide si nécessaire les stagiaires à les réaliser en apportant des précisions supplémentaires.
    • Des quizz sont proposés en fin des sections ne comportant pas d'exercices pratiques pour vérifier que les stagiaires ont assimilé les points présentés
  • En fin de formation, chaque stagiaire reçoit une attestation et un certificat attestant qu'il a suivi le cours avec succès.
    • En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en entreprise le cas échéant.

Plan du cours

  • The Finite State Machine Approach
    • Sequential Circuits and State Machines
    • State Transition Diagram
    • Transition Types
    • Moore-to-Mealy Conversion
    • Mealy-to-Moore Conversion
    • Exercises
  • Hardware Fundamentals
    • Flip-Flops
    • Metastability and Synchronizers
    • Pulse Detection
    • Glitches
    • Pipelined Implementations
    • Exercises
    • Hardware Architectures for State Machines
    • Fundamental Design Technique for Moore Machines
    • Fundamental Design Technique for Mealy Machines
    • Moore versus Mealy Time Behavior
    • State Machine Categories and State-Encoding Options
    • Safe State Machines
  • Design Steps and Classical Mistakes
    • Classical Problems and Mistakes
    • Design Steps Summary
  • Regular State Machines
    • Architectures for Regular Machines
    • Number of Flip-Flops
    • Exercises
  • Timed State Machines
    • Architectures for Timed Machines
    • Timer interpretation
    • Transition Types and Timer Usage
    • Timer Control Strategies
    • Time Behavior of Timed Moore and Mealy Machines
    • Examples of Timed Machines
Exercise :  Designing a burstable RAM controller
  • Designing for Synthesis
  • Metastability
  • Memory Synthesis
  • Reset Generation
  • Crossing Clock domains
Exercise :  Metastability
  • Timing Closure challenges
  • A methodology for successful Timing Closure
  • Common Timing Closure Issues
  • Static Timing Analysis
  • Role of Timing Constraints in STA
  • Common Issues in STA
  • Delay Calculation versus STA
  • Timing Path
  • Setup and Hold
  • Slack
  • On-Chip Variation
  • Clock
  • Port Delays
  • Completing Port Constraints
  • False Paths
  • Multi Cycle Paths
  • Combinational Paths
  • Xilinx Extensions
Exercise :  Design closure
Exercise :  Analyzing and Resolving timing violations
  • Overview
  • Transaction-Level Modeling
  • Constrained Random Test Generation
  • Functional Coverage
  • Intelligent Coverage Randomization Methodology
  • Utilities for Testbench Process Synchronization
  • Transcript Files
  • Error Logging and Reporting: Alerts and Affirmations
  • Utility Library
  • VVC (VHDL Verification Component) Framework
  • BFMs (Bus Functional Models
  • OSVVM and UVVM
  • Vivado Integrated Logic Analyzer (ILA)
  • Adding debug nets
  • Analyzing debug data
  • Resources