ac6-training, un département d'Ac6 SAS
 
Site affiché en Français
Site affiché en FrançaisVoir le site en English (USA)Voir le site en English (GB)
+ +
- -
Cours en ligne
 
Calendrier  Détails
Systèmes d'Exploitation
 
Calendrier  Détails
Programmation
Calendrier  Détails
Processors
 
Calendrier  Détails
Communications
 
 
 
Calendrier  Détails
+ +
> >
- -

ac6 >> ac6-training >> Processors >> ARM Cores >> Cortex-M4 / Cortex-M4F implementation Télécharger la page Ecrivez nous

RM3 Cortex-M4 / Cortex-M4F implementation

This course covers both Cortex-M4 and Cortex-M4F (with FPU) ARM core

formateur
Objectives
  • This course is split into 3 important parts:
    • Cortex-M4 architecture
    • Cortex-M4 software implementation and debug
    • Cortex-M4 hardware implementation.
  • Although the Cortex-M4 seems to be a simple 32-bit core, it supports sophisticated mechanisms, such as exception pre-emption, internal bus matrix and debug units.
  • Through a tutorial, the Cortex-M4 low level programming is explained, particularly the ARM linker parameterizing and some tricky assembly instructions.
  • The course also indicates how to use new DSP and FPU instructions to boost DSP algorithm implementation.
  • Note that attendees can replay these labs after the training.
  • The course also details the hardware implementation and provides some guidelines to design a SoC based on Cortex-M4, taking benefit of concurrent AHB transactions.
  • An overview of the Coresight specification is provided prior to describing the debug related units.
A more detailed course description is available on request at training@ac6-training.com
  • A basic understanding of microprocessors and microcontrollers.
  • Cours théorique
    • Support de cours au format PDF (en anglais) et une version imprimée lors des sessions en présentiel
    • Cours dispensé via le système de visioconférence Teams (si à distance)
    • Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et pédagogique
  • Au début de chaque demi-journée une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours répond à leurs attentes et l'adapter si nécessaire
  • Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus.
  • Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise, ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.
  • Les progrès des stagiaires sont évalués par des quizz proposés en fin des sections pour vérifier que les stagiaires ont assimilé les points présentés
  • En fin de formation, une attestation et un certificat attestant que le stagiaire a suivi le cours avec succès.
    • En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en entreprise le cas échéant.

Plan du cours

  • ARM Cortex-M4 processor macrocell
  • Programmer’s model
  • Instruction pipeline
  • Fixed memory map
  • Privilege, modes and stacks
  • Memory Protection Unit
  • Interrupt handling
  • Nested Vectored Interrupt Controller [NVIC]
  • Power management
  • Debug
  • Special purpose registers
  • Datapath and pipeline
  • Write buffer
  • Bit-banding
  • System timer
  • State, privilege and stacks
  • System control block
  • Internal bus matrix
  • External bus matrix to support DMA masters
  • Connecting peripherals
  • Sharing resources between Cortex-M4 and other CPUs
  • Connection to Power Manager Controller
  • Application startup
  • Placing code, data, stack and heap in the memory map, scatterloading
  • Reset and initialisation
  • Placing a minimal vector table
  • Further memory map considerations, 8-byte stack alignment in handlers
  • General points on syntax
  • Data processing instructions
  • Branch and control flow instructions
  • Memory access instructions
  • Exception generating instructions
  • If…then conditional blocks
  • Stack in operation
  • Exclusive load and store instructions, implementing atomic sequences
  • Memory barriers and synchronization
  • Multiply instructions
  • Packing / unpacking instructions
  • V6 ARM SIMD packed add / sub instructions
  • SIMD combined add/sub instructions, implementing canonical complex operations
  • Multiply and multiply accumulate instructions
  • SIMD sum absolute difference instructions
  • SIMD select instruction
  • Saturation instructions
  • Introduction to IEEE754
  • Floating point arithmetic
  • Cortex-M4F single precision FPU
  • Register bank
  • Enabling the FPU
  • FPU performance, fused MAC
  • Improving the performance by selection flush-to-zero mode and default NaN mode
  • Extension of AAPCS to include FP registers
  • Mixing C/C++ and assembly
  • Coding with ARM compiler
  • Measuring stack usage
  • Unaligned accesses
  • Local and global data issues, alignment of structures
  • Further optimisations, linker feedback
  • Basic interrupt operation, micro-coded interrupt mechanism
  • Interrupt entry / exit, timing diagrams
  • Interrupt stack
  • Tail chaining
  • Interrupt response, pre-emption
  • Interrupt prioritization
  • Interrupt handlers
  • Exception behavior, exception return
  • Non-maskable exceptions
  • Privilege, modes and stacks
  • Fault escalation
  • Priority boosting
  • Vector table
  • Memory types
  • Access order
  • Memory barriers, self-modifying code
  • Memory protection overview, ARM v7 PMSA
  • Cortex-M4 MPU and bus faults
  • Fault status and address registers
  • Region overview, memory type and access control, sub-regions
  • Region overlapping
  • Coresight debug infrastructure
  • Halt mode
  • Vector catching
  • Debug event sources
  • Flash patch and breakpoint features
  • Data watchpoint and trace
  • ARM debug interface specification
  • Coresight components
  • AHB-Access Port
  • Possible DP implementations: Serial Wire JTAG Debug Port [SWJ-DP] or SW-DP
  • Basic ETM operation
  • Instruction trace principles
  • Instrumentation trace macrocell
  • ITM stimulus port registers
  • DWT trace packets
  • Hardware event types
  • Instruction tracing
  • Synchronization packets
  • Interface between on-chip trace data from ETM and Instrumentation Trace Macrocell [ITM]
  • TPIU components
  • Serial Wire connection
  • Purpose of this specification
  • Example of SoC based on AMBA specification
  • Differences between AMBA2.0 and AMBA3.0
  • Centralized address decoding
  • Address gating logic
  • Arbitration, bus parking
  • Indivisible transactions
  • Single-data transactions
  • Address pipelining
  • Sequential transfers
  • AHB-lite specification
  • Parameterizing the AHB core provided by ARM
  • Second-level address decoding
  • Read timing diagram
  • Write timing diagram
  • Operation of the AHB-to-APB bridge
  • APB3.0 new features
  • Clocking and reset, power management
  • Using an external Wake-up Interrupt Controller (WIC)
  • Bus interfaces: Icode memory interface, Dcode memory interface, System interface and External Private Peripheral Bus interface
  • AMBA-3 compliance
  • Unifying the code buses
  • Unaligned access management
  • Debug interface
  • Connection to the TPIU
  • AHB Trace Macrocell (HTM)