ac6-training, un département d'Ac6 SAS
 
Site affiché en Français
Site affiché en FrançaisVoir le site en English (USA)Voir le site en English (GB)
+ +
- -
Cours en ligne
 
Calendrier  Détails
Systèmes d'Exploitation
 
Calendrier  Détails
Programmation
Calendrier  Détails
Processors
 
Calendrier  Détails
Communications
 
 
 
Calendrier  Détails
+ +
> >
- -

ac6 >> ac6-training >> Processors >> ARM Cores >> CORTEX-A53 implementation, ARM Architecture V8 Télécharger la page Ecrivez nous

RA7 CORTEX-A53 implementation, ARM Architecture V8

This course covers the Cortex-A53 and AARCH64

formateur
OBJECTIVES
  • This course aims to highlight the new features offered by the V8 architecture.
  • It has been developed for engineers developing low level software.
  • First, an overview of Cortex-A53 is provided, to highlight the differences between a Cortex-A15/Cortex-A7 hardware platform based on CCI-400 and a Cortex-A57/Cortex-A53 hardware platform based on CCN-504.
  • The new exception mechanism is described.
  • The enhancements regarding the LPAE are detailed.
  • New A64 assembler instructions are explained through practical examples.
  • The AAPCS64 is also covered.
  • The course also details the new debug ARM V8 features.
  • Cortex-A53 hardware implementation is explained, particularly the low power states.

A more detailed course description is available on request at training@ac6-training.com
  • Knowledge of ARM Architecture V7 is mandatory, particularly the LPAE.
  • Memory interface that implements either an ACE or CHI interface
  • Coherent interface, studying examples of hardware coherency within a Cluster and between Clusters
  • SoC architecture based on CCN-504 interconnect
  • Cours théorique
    • Support de cours au format PDF (en anglais) et une version imprimée lors des sessions en présentiel
    • Cours dispensé via le système de visioconférence Teams (si à distance)
    • Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et pédagogique
  • Au début de chaque demi-journée une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours répond à leurs attentes et l'adapter si nécessaire
  • Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus.
  • Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise, ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.
  • Les progrès des stagiaires sont évalués par des quizz proposés en fin des sections pour vérifier que les stagiaires ont assimilé les points présentés
  • En fin de formation, une attestation et un certificat attestant que le stagiaire a suivi le cours avec succès.
    • En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en entreprise le cas échéant.

Plan du cours

  • Enhancement with regard to AArchv7
  • Register mapping between A32/T32 and A64
  • Mapping of AArch64 System registers to the AArch32 System registers
  • Four exception levels
  • Exception Link Registers
  • Register banking by exception level based on a new exception model
  • Nesting on the same exception level
  • Exception type and exception origin
  • Syndrome registers used to provide a status information to the exception handler
  • Exception return instruction
  • Security model when EL3 is using AArch64
  • Trapping to EL3 using AArch64
  • Managing two types of processes: 64-bit and 32-bit, switching on an exception
  • Non secure space organization
  • The effect of implementing EL2 on the Exception model
  • Virtual interrupts
  • Superscalar operation
  • Predicted and non-predicted instructions
  • Branch accelerators
  • Invalidation and context switches
  • Synchronization and semaphores
  • Shareability memory attributes
  • Operation of the global monitor
  • Load acquire / Store release instruction pair
  • Use of WFE and SEV instructions by spin-locks
  • Mixed-endian support
  • Program counter and stack pointer alignment
  • Ordering requirements
  • Page attributes : Normal or Device
  • Shareability and access limitations on the data barrier operations
  • Memory barriers
  • LPAE enhancements to adapt to AArch64
  • Supporting up to 48 bits of VA per TTBR
  • Access permission checking
  • Supporting up to 48 bits of IPA and PA spaces
  • VMSAv8-64 address translation system
  • Memory translation granule size
  • Descriptor page table organization, descriptor format
  • Hierarchical control of Secure or Non-secure memory accesses
  • TLB preload instructions
  • TLB maintenance instructions in A64
  • Cortex-A53 TLB implementation
  • Cache hierarchy, Point of Unification, Point of Coherency
  • Load non temporal instruction
  • Instruction and Data cache maintenance instructions in A64
  • Cortex-A53 L1 and L2 memory system
  • A64 assembly language, regular bit encoding structure
  • Instruction aliases
  • Branches, function call and return
  • Conditional select instructions, avoiding branches
  • Load Store instructions, addressing modes
  • Arithmetic and logical instructions, CRC calculation instructions
  • Instructions for accessing AArch32 Execution environment registers
  • General register usage convention
  • Stack pointer and frame pointer
  • NEON / VFP register usage convention
  • New register banking for NEON and VFP
  • Mapping of the SIMD and floating-point registers between the Execution states
  • Vector formats in AArch64 state
  • New SIMD instructions
  • Cryptography software support through a new family of instructions
  • Generic Interrupt Controller CPU interface registers
  • Interrupt virtualization
  • Interrupt handling to support nesting
  • System counter clock frequency
  • Physical and virtual timer count registers
  • Physical up-count comparison, down-count value and timer control registers
  • Virtual up-count comparison, down-count value and timer control registers
  • Wait for Interrupt and Wait for Event
  • Cortex-A53 low power modes
  • L2 Wait for Interrupt
  • Processor dynamic retention
  • Support for power management with multiple power domains
  • Dormant mode
  • Self-hosted debug
  • Debug state instructions
  • Linked comparisons for Breakpoint/Watchpoint exception generation
  • Software Step exceptions
  • Routing debug exceptions
  • External debug, cross-triggering
  • Embedded Trace Macrocell architecture
  • Per-function performance monitoring at EL0 level
  • Effect of EL3 and EL2 on Performance Monitor
  • Event filtering
  • Clocking
  • Resets